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Cemented fibrous materials (soft composites) are widely used, and it is important to 
forecast their physicomechanical properties. 

Deformation and failure in nonwoven cemented materials are mainly described by a phe- 
nomenological approach [1-3], which does not fully incorporate the structure of the material, 
the properties of the fibers and bonding agent, the porosity, and so on, which would enable 
one to perform a purposive search for new materials with given properties. A structural 
model [4] is used here to examine creep in a soft composite on the basis of the linear visco- 
elastic behavior of the binding agent and fibers. 

In that model, a biaxial state of stress arises on uniaxial stretching along the Oy 
axis by a stress o, for which the static equilibrium equations [4] are 

~(~ --  ~ ) =  o ~ c o s 2 ~ +  G ~ ,  ~ + ~ s h ~ , ~  = 0 (1)  

and the compatibility conditions for the strains (taken as small) are 

( l+  ~)2 = ( t +  ~)2 sin2 ~o+(t + ~)2 cos2 ~0, (2) 
( l + e ~ ) t g ~ = ( t + e ~ ) t g s o  v o ~ 0 ,  v t ~ 0 .  

I n  (1)  and (2)  we have  u s e d  t h e  [4] s y m b o l s ,  and we m e r e l y  n o t e  t h a t  h e r e  and s u b s e q u e n t l y  
a l l  q u a n t i t i e s  w i t h  s u b s c r i p t s  x and y r e l a t e  t o  t h e  bond ing  a g e n t  and t h o s e  w i t h  z t o  t h e  
fibers, while t is time. 

To close (i) and (2), we assume that the fibers and the bonding agent obey a three- 
element rheological model: 

which is called a Kelvin body [5, 6]. Here B c is the instantaneous modulus, BcPc/V c the 
long-time modulus for the corresponding element, and c = {x, y, z}. If B x ~ By (or v x ~ Vy, 
Px ~ Py), we have a bonding agent whose rheological characteristics differ as between ten- 
sion and compression. 

System (1)-(3) completely describes the rheological behavior this unwoven material 
under uniaxial external stress. It is not possible to determine explicitly the time depen- 
dence of the strains gx and Ey, e.g., in creep, since (i) and (2) are nonlinear. A numer- 
ical algorithm was set up involving integration by time step, which enables one to use a 
linear system of equations for the increments in the unknowns at each time step. We write 
the current values for the stresses and for the stresses and strains in the elements to- 
gether with the reinforcement angle as 

o~+: = ~ + A~o, oo,~+: = o~,~ + A~oo, 8~,~+: = 8~,~ + A~8~, ( 4 )  

~ - , + I = ~ + A ~  Vt~[&, ~+h~t ] ,  A~t=~+~--t~, m = i ,  2 . . . . .  

in which t i = 0, o z ,  Oc, z, Sc, i, ai are fixed quantities derived from short-time loading, 
and c = {x, y, z}. 

We substitute (4) into (i)-(3) and neglect quantities of the second order of smallness 
by comparison with the increments in all these quantities to get 

(4~ ~A~ ) 
(I -- ~x) Amff ~ ~yAmqy + QxCtg2~m \ ~ ~ ~mffx , 

0 = A ~ Q ~  + ~ ( A ~  sin 2 a~ + A ~  .... sin 2 ~ ) ,  
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X,,.~h.~e~ = L=,,,,A,.e=sin:tzo+X~,,~Ame~C,os~ a~o, ', A, .e~tg ~ - -  A .~e= tgao+  Ama(L:,.~+ L~,~tg ~.~ t g a o ) = 0 ;  ( 5 )  

(Xc, m = 1 + gc,m, c = {x, y, z}). As Oc,m, r ~m are known at each step m + 1 in time, 
they are independent of time. 

We use (5) and (6) for creep, i.e., for 5m o = 0, Vm and Vt>0, with the initial condi- 
tions 

to determine A~o=, A~e=, A,,,= vt~[t,., t ~ + A ~ t ]  a s  
3 

i n  w h i c h  X~ = {A~o~, A~e=i A~=}; A~,m = c o n s t .  

Detailed calculations have been performed for B x = By = B, ~x = ~v = ~' Vx = ~y = v, ~z = 
v z = 0, i.e., when the bonding agent is a linearly viscoelastic body (rheological parameters 
identical in tension and compression), while the fibers are linearly elastic. In this case, 
from (5) we determine AOx, 5r ~ , Aa in terms of AOy, Ao z, Aez- Then (6) can be trans- Y 
formed to a linear differential equation system for &Oy, AOz, As z, whose characteristic 
polynomial is / ~ ,~ (K)a+  I~ ,~(K)2+ ~ , ~ K ,  where 

I a l l , r a  a12,ra I azl,ra a 3 2 , m  
I~  m = I ' 10 m = I 

' , a ' ~ l , m  ~/22,m ' a l l , m  Q42,m r 

a'= "=1+['= a=.  
The coefficients aij,m (i = i, 4, j = i, 2) are not given because they are cumbersome and we 
merely note that they depend on v, ~, Xc, m, ~c,m, am, Fl = ~Y/~x, F2 = ~z/~x , Bz = Bz/B" Here 
and subsequently, the bars denote dimensionless quantities obtained by dividing by Young's 
modulus Bx i= By = B. Then the increments at each step m are 

A~, = Ao,~ -- A~,~C2,m erp [K,,m ( ~ -- ~) ] + A2,~C,,~ erp [K2,~ (~ -- ~) ], 
A~e, = A~,~ + C2,~ exp [KI,~ (T - -  ~m) ] - -  C1,~ exp [Kz~ (T - -  T~) ], 

AreS: = L~,: [ (B= ctg 2 a ~ / ( 2 ~ : , : )  --  t/Z:,=) A : e :  --  F , A ~ : / ( 2 ~ =  =) ], 

i n  w h i c h  % = v t ;  ~m = Vtm, a n d  t h e  c o n s t a n t s  C i ,  m a n d  A j , m  ( i  = 1,  2 ,  j = 0,' 3 )  a r e  d e f i n e d  
via the aij,m, the characteristic roots, and the right-hand sides in (6). The solution has 
been used in a numerical algorithm. The time step Am r = VAmt was chosen on the basis that 

all the increments are small, i.e., 

M =  max {15m~l, lAmer lAm~l/n; c = x , y , z } ~ .  

Here 0 < ~ ~ 1 is a preset number, which is derived on the basis that quantities of the 
second order of smallness relative to the increments can be neglected. The computation ter- 
minates when one of the following constraints is met: i) ~m = 0 (with a given accuracy), and 
2) M < E ~ 6. The first means that the fibers lie in the direction of the external load 
and the behavior of the composite is as for filaments, i.e., linearly elastic, while the 
second shows that the state of stress and strain hardly varies in time after a certain in- 

stant. 

Figure i gives numerical results with 6 = 10 -2, e = I0 -5, Bz = 20, a0 = ~/3, 

and 

ol = 0,187, o~.1 = --0,386,  ~v,l = 0,716, ~=,~ = 0,168, ~ = 0,554; 

~ = 0,374, ~,~ = - -0 ,5 t5 ,  ~,~ = 0,857, ~ , t  = 0,378, ~t = 0,424, 

~/V = 10-2 

(7a) 

(7b) 
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which have been taken from [4] and correspond to short-time loading with linearly elastic 
behavior for the fibers and bonding agent. Curves i and 2 correspond to the parameters from 
(7a) and (7b), The dashed lines represent the change in the angle ~ between the intersect- 
ing filaments over time. 

The results show that the instantaneous applied load in long-time strain has virtually 
no effect on sy, the longitudinal strain, and the longitudinal stress Oy and transverse 
stress Ox, but has a considerable effect on ex, ~, and o z . The stresses o z in the fibers 
are dependent on time because of force redistribution between the elements, although they 
obey Hooke's law. However, it is readily shown that the dependence is unimportant (the same 
applies for the Sz). 

Numerical results for ~/v of 0 to 10 -2 show that the state of stress and strain is al- 
most the same as that given in Fig, i, whereas it differs considerably from it for i0 -~ < ~/ 
v < i. Figure 2 shows results for the (7a) parameters with ~/v = 0.5. 

This model for the fiber base in a nonwoven material enables one to use the rheological 
characteristics of the binding agent and filaments to determine the creep under uniaxial 
stretching and also to determine the longitudinal and transverse strains and to correct for 
the finite change in the fiber orientation angle during the strain, which is particularly 
important for designing components made from synthetic materials. 
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